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For convective problems, the “modified equation” can be considered as the actual partial 
differential equation solved by a given numerical scheme using tinite differences. Such an 
expression characterizes the dissipative and dispersive properties of the scheme. Adjusting the 
parameters of flux-corrected-transport (FCT) algorithms to cancel the successive truncation 
terms in the modified equation can be used in place of Fourier analysis when the velocity is 
no longer constant and uniform. This technique is used to propose a time-centered FCT 
algorithm in which diffusion/antidiffusion coefficients are velocity gradient dependent and 
which has reduced diffusion and noise level. 0 1990 Academic Press, Inc. 

INTRODUCTION 

The flux-corrected-transport (FCT) technique Cl] is a way to design convective 
algorithms which are highly accurate in regions with smooth gradients and are “suf- 
ficiently” diffusive around strong gradients and shocks. Different FCT schemes have 
been proposed [2, 31. However, in most cases, Fourier analysis (restricted to a 
uniform and constant velocity) was used to determine their dissipative and disper- 
sive properties. Parasite effects due to space discretization in the presence of 
velocity gradients were approached with the introduction of ZIP fluxes [4]. 

Displaying space and time errors of a numerical scheme, the “modified equation” 
technique is a way to answer the question: What analytic equation is actually being 
solved numerically? Hirt [S] opened the track in 1968 with a heuristic analysis; 
then Warming and Hyett [6] established the connections between the modified 
equation method and the von Neuman (Fourier) method when the velocity is 
constant. More recently, Lerat and Peyret [7-91 developed a method for use with 
coupled hydrodynamic systems. 

In this paper, we use the modified equation to optimize the diffusion-antidiffu- 
sion coefficients of two FCT algorithms. This method corroborates the conclusions 
of Fourier analysis when the velocity is constant and uniform. For a more general 
velocity, the modified equation method, which can still be used as opposed to 
Fourier analysis, emphasizes differences between numerical schemes that give 
almost identical results for passive uniform convection. 
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In Section 1, the classical ETBFCT scheme [ 10, 121 is examined, first by Fourier 
analysis, and in more detail, through its modified equation. This widespread algo- 
rithm [ 11, 123, when used in classical hydrodynamics, can turn smooth parts of a 
solution into a succession of steps. A first possible explanation of the staircase 
appearance of the solutions is the slight linear instability of the unlimited scheme, 
which is demonstrated by Fourier analysis. In inhomogeneous velocity fields, the 
fourth order accuracy of the scheme drops to second order: this situation is 
examined through the modified equation. This method underlines the origin of 
the dominant remaining truncation errors and suggests the use of an intermediate 
solution evaluated at half step. 

In Section 2, a new time-centered FCT scheme is proposed, examined, and tested. 
First, its linear properties are examined by Fourier analysis for a uniform velocity. 
Then, the modified equation method is used to adjust the diffusion-antidiffusion 
coefficients for minimum truncations errors in the case of an inhomogeneous velocity 
field. The optimal coefficients are found to be velocity gradient dependent. The 
lower dissipation and the reduced noise level of this time-centered FCT algorithm 
are illustrated by simulations of a shock tube problem. 

1. MODIFIED EQUATION OF THE ETBFCT SCHEME 

ETBFCT blends three fluxes computed at the cell interfaces. The first flux (y) 
describes convection. It has second order space accuracy. The second (fd) is a 
strong diffusion and the third (f”), the antidiffusion, is “corrected” by the limiter. 
The main effect of the latter flux is to cancel the diffusion whenever this does not 
destroy the positivity of the solution. Carefully designed, it can also increase the 
precision of the whole scheme. We shall refer to the “limited” (or complete) algo- 
rithm when the nonlinear flux limiter controls the antidiffusion and to the 
“unlimited” scheme when the flux limiter is removed. We shall concentrate on the 
latter situation, which is the only one accessible to a linear or linearized analysis 
and which already brings a clear insight into many aspects of the complete scheme. 

The ETBFCT finite difference approximation of the 1D Cartesian continuity 
equation, 

can be written 

581/91/2-12 
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where 6x and 6t are the grid spacing and time step, pp is the value of the solution 
in cell i at time n&, and p?’ ’ is the value at the end of the current time step, at 
time (n + 1) 6t. The coefficients Ci+ i,? represent the effect of the nonlinear flux 
limitation and their values are in the range (0, 1). 

If we use wi+ 1,2 to denote the arithmetic mean of any quantity w in cells i and 
(i + 1 ), the fluxes are defined as 

fF+ l/2 = “i+ 112 
L”:+;+pq, f~+,,*=vi+,,2[p:+~~p,], (1 3) 

fi”, l/2 = Pi+ l/2 
["";,"'], . 

where v and p are adjustable coefficients. The “transported” solution p’ is an 
approximate value of p”+ ’ given by 

PI = P1 --g lx+ l/2 -K 1/J. 

To Fourier analyse this scheme, we consider, at time n 6t in cell i a perturbation 
of the form pi = p. ejckiSx), where p. is the amplitude. Writing 

P=k6x; a= 1 -cost; &26’ u St 
6x2 ; &=6x’ (1.4) 

we obtain, for the amplification factor G = pl;+‘/p;f of the unlimited ETBFCT 
scheme, 

IG12 = 1 + a[2s2 - 2b(v - p)] + a2 [s2(4,nb - 1) + b2(v - P)~] 

+ u3 [2&*/d+& - l)] - f24(&/.&)2. 

If we now choose the coefficients v and p to be [lo, 121 

(1.5) 

6x2 1 E2 6x2 1 &* 

v=-& [ g+3 1 ; ‘=6t [ --- 6 6 1 
the squared module of the amplification factor G reduces to 

(1.6) 

(G,‘=l+~(l-E*) 1-32+~*)-+~) . 1 (1.7) 

A contour plot of (GI as a function of the Courant number E (vertical axis) and of 
the reduced wavelength 1/6x of the modes (horizontal axis) is represented in 
Fig. la. It shows that the bracketed expression in Eq. (1.7) changes sign for ax 0.6 
(for E < f) and that JGI is slightly greater than unity for 1/6x > 5-6. This underlines 
the weak instability of the unlimited scheme for intermediate modes. The complete 
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FIG. 1. Amplification factor for (a) ETBFCT and (b) time-centered FCT, as a function of Courant 
number E (vertical axis) and reduced wavelength 1/6x of the modes (horizontal axis). Note that the 
amplification factor of time-centered FCT is everywhere less than unity. 
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scheme is stabilized by the properties of the flux limiter that prevents any point of 
the simulation from growing higher than its greater neighbour, or becoming smaller 
than its smaller neighbour. In smooth slopes, there is nothing to stop intermediate 
modes from slowly growing until some local “terraces” are created and then 
controlled by the limiter. 

To derive the modified equation of the ETBFCT scheme, we follow the method 
described by Warming and Hyett [6] for a constant velocity, but here we keep the 
time and space derivatives of u in the modified equation. 

The unlimited scheme (1.2), with the flux definitions of Eqs. (1.3), can be written 
as the sum of three terms, 

(1.8) 

where antidiffusive fluxes have been split into terms (II) and (III). Term (II), 
including only the second order derivative of p, is dissipative, while the third order 
derivative of the convective flux gives dispersive properties to term (III). Coef- 
ficients v and p have not yet been assigned values. 

In a first step, each term of the finite difference approximation (1.8) is expanded 
in a Taylor series around the point (i 6x, n at). In this analysis we use the notation 
’ (dot) for time derivatives, and ’ (prime) for space derivatives. 

Term (I) of Eq. (1.8) is the sum of two terms, (I) = T+ C, which can be 
expanded as 

and 

c=(p”)‘+&&2 $+$!I+ 
[ 

!y + $I 1 + O(dx4). 

(1.9) 

T and C are composed of a first term, which appears in the original equation, plus 
a truncation error. We shall denote as ETC the bracketed expression appearing in 
the truncation error of C: 

ETC = 
[ 

P”‘U 0’ 7+4+ . “I” I PI”’ 1 (1.11) 
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Expanding terms (II) and (III) of (1.8) in series yields 

(II) = - [(v - p)p’]’ + O(a 6x2) 

(III) = -&[@)“]’ + &0(/J 6x2). 

Collecting terms of same order in (I), (II) and (III), with notations 

6t o=sx; @=-&(v-p); Y=-$ (1.12) 

gives the expression of the modified equation 

p+(pu)‘+6x ;p-f(@Y) 
[ 1 [ +6x2 ETC+$qqpu)",' +0(6x3)=0. 1 

(1.13) 

Then, in a second step, high order time derivatives are expressed in terms of 
space derivatives by successive differentiation of the modified equation. For 
instance, the second order time derivative is computed by multiplying Eq. (1.13) by 
-0 6x/2 and differentiating with respect to time. The resulting expression, 

-6x ;p+; [(pu)‘]’ -6x2 
[ 1 [ ;p-~(@p')" +0(6x3)=0, 1 

when added to Eq. (1.13) reads 

b + (pu)‘+ 6x 
[ 

-; (pu)‘--!j (f&l’)’ 1 
ETC-$- [Y(pu)“]‘+;(@@)” +0(6x3)=0. 1 (1.14) 

The first order term containing a mixed second derivative is then computed by 
multiplication of the modified equation (1.13) by the velocity u and differentiation 
with respect to space. Finally, the modified equation can be written as 

p+(pu)‘+6x -~(pl)‘+~[u(pu)‘3’-~(~p’)’ 
[ 1 

l’}+o(sx3)=o. (1.15) 
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Important information can be derived from this expression. Let us show that 
adjusting the modified equation for the best accuracy is a way to determine coef- 
ficients v and p. 

Let us first examine the simple situation where the velocity u is independent of 
space and time. In this case, Eq. ( 1.15) reduces to 

(1.16) 

Cancelling the first order term of the truncation error leads to 

hence, with the definitions (1.12) of D and @, to 

6x2 &= 
V-p=6tT. 

(1.17) 

(1.18) 

Note that this result is easily obtained in a Fourier analysis, adjusting v and p to 
bring the amplification factor IGJ as close as possible to unity (cancellation of term 
proportional to a in Eq. (1.5)). 

Using the expression (1 .17) of 0 and the expression (1.11) for ETC, and assum- 
ing a constant velocity, Eq. (1.16) yields 

i[ 

1 rY2u2 
p+(pu)‘+6x2 ;---&-- Y 1 I up”’ + 0(6x3) =o. 

Then, again, cancelling the second order term of the truncation error leads to 

6x2 1 E2 P+l-a2”2)ep~ 6-6 . 
( > 

(1.20) 

In this analysis we have first adjusted @ (Eq. (1.17)) to suppress the coefficient 
of the second order space derivative in the truncation error, thus removing its 
dissipative (or destabilizing if positive) effect [S, 63. The remaining dispersive term 
(proportional to the third order space derivative) is then cancelled by adjustment 
of Y (Eq. (1.20)). It is not surprising that Eqs. (1.18) and (1.20) yield to the same 
determination (1.6) of coeflicients v and CL, whose values can be obtained,. following 
Boris and Book [3], through a Fourier analysis where both amplitude and phase 
errors are minimized for long wavelengths. 

When the velocity is no longer constant, the modified equation method can still 
be used, as opposed to Fourier analysis. It is there fore a convenient tool with 
which to study the truncation errors of ETBFCT. The classical use of this scheme 
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has been described by Boris and Book [2, lo]. They recommend estimating the 
velocity u(t + 6t/2) by integration over a half step, and using it in the full step, 
for computation of the convective fluxes and coefficients v and p. The modified 
equation of ETBFCT with this time-centered velocity is 

p + (pu)’ + 6x [2 j+P7~] a [u(pu)’ 
2 + 6x2 r c ; i(pu)’ - u(pi)’ -; pii 1 

;[u(pu)‘l’+@p’)’ - yI+E (pu)” ] [ 2] ]}+Wx3)=0. (1.21) 

Note, with comparison of Eq. (1.15), that the time derivative of the velocity u has 
cancelled out in the first order term of the truncation error. 

If we now look at the case where u is a function of space, but still independent 
of time, the modified equation displays the truncation errors of ETBFCT for a 
stationary but inhomogeneous velocity field. Dropping the time dependence of u in 
Eq. (1.21) and replacing v and p (@ and Y) by their classical definition (1.6), it is 
easy to write the first order term as 

f$ [p(uu’)]‘. 

Consequently, we can expect a noticeable dispersive effect in regions where both the 
velocity and its derivative are important. Furthermore, the second order term now 
contains an expression involving the second order space derivative of p, thus having 
a dissipative effect. It reads 

(1.22) 

Using the second order ZIP form of the convective flux [4] does not help as this 
term changes only to 

(1.23) 

Then, for both cases, this term is diffusive when u’ > 0 (rarefaction) and destab- 
ilizing when u’ < 0 (compression or shock), in the range of Courant numbers E < 1, 
required by ETBFCT to maintain positivity [3]. 

Simulation of the shock tube provides an illustration of this kind of errors. This 
Riemann problem has been simulated on a 120-point grid, using the limited 
ETBFCT algorithm. Initialization sets the cells length to unity, a density equal to 
one and a zero velocity everywhere. Temperature is 1000 in cells 1 to 50, and unity 
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FIG. 2. Velocity and pressure profiles of the shock tube problem (see text). ETBFCT results are solid 
lines; time-centered FCT results are dotted lines. Note for time-centered FCT the reduced noise level and 
lowered dissipation in rarefaction regions. 
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in cells 51 to 120. A perfect gas law with y = $ and reflective boundary conditions 
are used. The time step is limited by the condition: (u + Ic,I <0.46x/&, where c, is 
the sound velocity, and a flux limiter given by the prescription of Zalesak, without 
its peak restitution [ 131, controls the antidiffusion. Figure 2 shows the velocity and 
pressure profiles when the right moving shock has reached cell number 100, and the 
left moving rarefaction fan has begun its reflection from the left boundary. 
ETBFCT results are drawn with solid lines; dotted lines show solutions obtained by 
an improved time-centered algorithm, which will be discussed in Section 2. 
ETBFCT solutions are noisy in the rarefaction region where the velocity and its 
derivative are important. In this region, the smooth slope inhibits the flux limiter 
until some steps are created. The second order diffusion (see Eq. (1.22)), can be 
seen, near cell number 18, by comparison with the results of the time-centered 
scheme (dotted lines), where this diffusion has been cancelled out (see Section 2). 
Surprisingly, velocity and pressure in ETBFCT solutions have a small bump at the 
contact discontinuity (near cell number 86) where they should be constant. 

In Ref. [lo], Boris described how to use ETBFCT for Eulerian hydrodynamics. 
The three equations of conservation (mass, momentum, and energy) are first solved 
by the complete algorithm, with time step h/2, to compute mid-step solutions. 
Mid-step velocity and pressure are then estimated. These two time-centered quan- 
tities are then used in the full step algorithm to calculate the solution at t + 6t. With 
such a procedure, the complete algorithm, including its flux limitation, is called 
twice for each equation. This double pass and the favorable effect of time centering 
the velocity have focused our interest toward a fully time-centered FCT scheme, 
which we describe in the following section. 

2. TIME-CENTERED FCT 

The scheme is made of two time-centered FCT steps. Each of them includes a 
strong explicit diffusion that limits the time steps to Courant numbers E < 4 to 
ensure positivity. Therefore, to estimate the solutions at t + St/Z, we have chosen to 
begin with an interpolation between times t and t-at, and to advance these values 
from t - 6t/2 to t + &/2 with a first time-centered FCT step. The alternative predic- 
tor technique that would compute solutions at t + 6t in a double length time 
step, and then interpolate back at t + h/2, would have a more severe time step 
constraint. 

Solutions are supposed to be known at times t and t -6t and we denote by * 
(respectively “) quantities evaluated at time t-&/2 (respectively t + h/2). p* is 
computed at almost no cost, by linearly interpolating between p” and p”- I. Then, 
the solution p at t + iit/2 is computed by a first FCT step with time-centered 
convective fluxes and time-centered diffusion-antidiffusion coefficients, 

Pi-fii 
-= --& Cfic+1,2 

6t 
-fi"_ l/2 -if+ l/2 + It l/2 + e+ l/2 -FE I/A (2.1) 
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where the fluxes are 

.fF+ I,2 = “i+ I/2 
[“‘+;‘“:I; ~~+,,2=v+,,2[“‘+~~“i]; (2.2) 

ST+ 112 = 
pi+ 1,2 [“‘+;, “:I. 

These mid-step values are used in the convective fluxes and coefficients of the whole 
step as follows, 

py+l-ppr 

6t 
= -& c~~+1,2-~c-1/2-fid+1/2+~~-1/2+fia+1,2-fia_1,21~ (2.3) 

where 

~~+l,2=si+r;2[i)i+;+Pii]; f~+l,2=,i+l,2[pl+~xp~]; 

[P'+8,Pi]. fi", 112 = iii+ l/2 

(2.4) 

Note that antidiffusions are calculated using “transported” values that are estima- 
tions of end-of-step solutions, 

P:=P:-g cx+1,2-L/21. (2.5) 

On the other hand, diffusions are computed from solutions at the beginning of the 
step and convections with mid-step values. 

Let us Fourier analyse this scheme. Using definitions (1.4) of a and b and 
notations, we obtain 

z-Pi+l-Pi-l 

P7 ' 

uJ+2-pi* 

P7 * 

The amplification factor G = ~t+~/p;I reads 

G=[l-(v-p)ab]-$+p+22). 

If we denote by H the ratio &,/p;I, then 

Z = 2jH sin f3, U = 2jH sin 28 

and G changes to 

G=[l-(v-p)ab]--jHssinj3[1+pab]. (2.7) 

(2.6) 
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Let us suppose now, for a while, that the two steps have the same amplification 
factor G. Then 

,&,=Gp*= G[p:+2pyP1]=p:[C$L] and H=F. (2.8) 

The squared module of the amplification factor G is then 

,G,2 = Cl - (v -PMI~ + CQ sin B(1 + P~)I’ 
1 + [c/2 sin fi(1 + @)12’ 

If one chooses equal diffusion/antidiffusion coefficients, the module of G is strictly 
unity. The numerical phase velocity is then 

uV =i arctan[ -Im(G)/Re(G)] 

Phase errors can be reduced by cancelling the second order term in up, which 
completely determines v and p: 

6x2 1 E2 
v=p=-& s+E . [ 1 (2.9) 

Without the simplifying hypothesis (2.8), the exact value of H is 

H= :+A [l-(v-Cl)&]-j.ssin/I[l+~ub] 1 1 (2.10) 

andlettingX=l-(v-p)aband Y=ssinfi[l+&],Gisnowtherootof 

which has a positive propagation velocity. 
We have plotted (GI given by (2.11) in Fig. lb, with the choice (2.9) for v and 

p. It can be seen that IGJ is everywhere strictly less than unity; this scheme is 
linearly stable for all modes. 

As with ETBFCT, and for the same reasons of positivity preservation, the time 
step is limited to Courant numbers E < 4. Within this range, we have run the classi- 
cal test of the passively convected square wave [ 11. Results obtained with ETBFCT 
and the present scheme exhibit no significant difference. For passive convection of 
more complicated profiles including short modes, it can be shown that our time- 
centered FCT is less noisy than ETBFCT. These conclusions for a constant velocity 
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are not unexpected: the two schemes have comparable fourth order phase errors, 
but, in contrast to ETBFCT, our time-centered FCT has an amplification factor 
strictly less than unity for all modes. 

Let us proceed to the modified equation of this time-centered algorithm. First, we 
shall confirm the determination (2.9) of v and p when u is a constant. Then, we 
shall underline differences between the two schemes for inhomogeneous velocity 
fields. 

It is easy to see that values at t + &t/2, obtained by the time-centered FCT step 
(2.1) from interpolated solutions at t - St/Z, can be written as 

Using these expressions in flux definitions (2.4) and expanding each term of 
Eq. (2.3) in a Taylor series around the point (n dt, i 6x) lead to the modified 
equation. Colleting terms of same order yields 

fj+(pu)‘+dx ;~--$p’)‘+;(p”)‘- [ 1 
ETC+$- [YQu)“]‘-; [Pp’]‘+; [bu+@+pii]’ +0(6x3)=0, 1 

where ETC is still the value of Eq. (1.11). Replacing high order time derivatives by 
space derivatives provides some simplifications in the modified equation, which can 
be written as 

+g [p(ii-uil’+tiu’)]’ +0(6x3)=0. 1 (2.12) 

As in the analysis of ETBFCT, restricting this expression to the case u = const is an 
alternative method of determining the diffusion and antififfusion coefficients. This 
modified equation then reads 

p + (pu)’ - $ (@p’)’ + 6x2 [up’f;-(Y+;)+~]]+O(bx’)=O. (2.13) 

Cancelling the first and second order terms leads to Qi = 0 (v = p) and 
!P= (1 + s2/2)/6 and confirms the determination (2.9) for coefficients v and p 
obtained from Fourier analysis. 
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Furthermore, extended use of the modified equation to inhomogeneous velocity 
cases is a fruitful approach to identifying and cancelling out nonlinear dissipative 
terms. Using the values (2.9) of v and p and definition (1.11) of ETC, and assuming 
a stationary but space dependent velocity, Eq. (2.12) yields 

02uu’u” f12d3 
T+F +p’ 1 [ 1 

[ 
lT2u2u’ 

+p” -f+lz II + 0(6x3) = 0. (2.14) 

The third term in the truncation error is proportional to the second derivative of 
p. It is now the main dissipative term, and one can derive corrections to coefficients 
v and p that will exactly cancel it out. If we set 

v~!g{[~+~]+!E[~~+~]} 

p2!g{[~+LJ-~[-~+LJ} 
(2.15) 

the first order term in (2.12) is no longer zero but has a second order value that 
exactly cancels out the dissipative term. The modified equation simply reduces to 

Is* 6x2 
P+(P)‘+,, [puu’*]’ + O(Sx3) = 0. (2.16) 

The truncation error is considerably decreased and, at this order, no longer 
includes any dissipative term. Note, by comparison with analysis of ETBFCT, that 
the truncation error remains of second order. 

The modified equation provides also a straightforward way of studying the role 
of ZIP convective fluxes [4]. If they are defined as 

the truncation error ETC does not include any first and second order space 
derivatives of the velocity. With these fluxes, the coefficient - f in corrections (2.15) 
simply changes to - 5, and the resulting modified equation is exactly the same as 
Eq. (2.16). 

In Fig. 2, we have plotted, with dotted lines, results of a simulation of the same 
shock tube problem used in Section 1. They have been obtained using our limited 
time-centered FCT algorithm, with the convective fluxes in ZIP form, and the 
antidiffusion controlled by the same flux limiter used in Section 1, for ETBFCT 
simulations. Because solutions in the shock region (cell number 100) are strongly 
dependent on the properties of the flux limiter, they do not differ appreciably from 
ETBFCT calculations. Pressure and velocity profiles are now constant at the contact 
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discontinuity (around cell number 86). The main differences between the two 
algorithms can be seen in the rarefaction region (cell numbers 15 to 45). Time- 
centered FCT, which has been shown to be free of first order dispersion term, has 
smooth solutions (dotted lines), whereas ETBFCT results (solid lines) have a staircase 
appearance. Let us emphasize that it is not due to an increased diffusion. Further, 
the reflected rarefaction wave can be seen more clearly in time-centered FCT 
profileS (around cell 18). The small slope variation of the velocity gradient is 
partially smoothed out in ETBFCT results. This is due to the remaining second 
order diffusion and cumulative effects of the flux limiter controlling the first order 
dispersion errors. 

Our test case was chosen to enter into the frame of the review paper by 
Woodward and Colella [ll], which compares solutions of a shock tube problem 
computed by up-to-date numerical methods, run at a Courant number less than or 
equal to 0.4. The initial temperature jump of 1000 to 1 makes it a more servere test 
than the original benchmark of Ref. [lo], which has a ratio of 10 to 1. Furthermore 
the Courant number E < 0.4 is an unfavourable situation for ETBFCT, whose small 
linear instability amplifies any numerical noise. For completeness, we should have 
denoted the original scheme as “theoretical” ETBFCT and mentioned that it can be 
damped slightly [15] to eliminate this difficulty for small Courant numbers. This 
“optimized” ETBFCT is only described by its recently published Fortran listing 
(Appendix A of Ref. [12]), which is not the original ETBFCT listing [lo]. Coef- 
ficients v and p differ by a small amount from those given by Eq. (1.6). They are 

v=z [0.167+0.333 E*] or 

1 or 

The linear amplification factor G of this “optimized” algorithm is represented in 
Fig. 3. It shows that the Courant number E = 0.2 is an optimal value for this version 
of ETBFCT, which has, for long wavelengths, an amplification factor equal to 
unity, the ideal value. The solutions of our shock tube problem, run with this ver- 
sion of ETBFCT at a Courant number less than 0.2, are almost identical to the 
results of our time-centered scheme, run at a Courant number less than 0.4. For 
Courant numbers greater than 0.2, the “optimized” ETBFCT cannot completely 
damp the nonlinear dispersive errors. Our time-centered FCT, having a reduced 
noise generation and being linearly stable for all E ~0.5, can be run at Courant 
numbers approaching this limit, therefore reducing the computing cost. 

CONCLUDING REMARKS 

In deriving our time-centered scheme, we have not considered FCT as the 
blending of two convective fluxes, a first order one and a higher order one. We have 
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FIG. 3. Amplification factor for “optimized” ETBFCT (see text) as in Fig. 1. G = 1 for E = 0.2 and 
large wavelength makes this Courant number an optimum for this version of the scheme. 

kept the original three-flux formulation: convection, diffusion, and antidiffusion. 
Computing diffusion and antidiffusion at different times introduces third order 
space derivatives in the modified equation and gives an opportunity to cancel out 
both time and space dispersion errors through velocity dependent coefficients. It 
has been shown [14] that two-flux schemes based on very high order convective 
fluxes can only deal with the dispersion due to space discretization. 

Finally, we want to point out that our time-centered FCT algorithm is 
independent of any specific system of partial differential equations. This property is 
obtained in our derivation of coefficients v and p (Eq. (2.15)), neglecting the time 
derivatives of the velocity in the modified equation (2.12). Estimating those would 
require using the momentum equation and would introduce corrections dependent 
on the specific system of fluid equations. This time-centered scheme is therefore a 
general purpose tool and we plan to use it to simulate MHD convective effects, 
where the effective velocities are strongly inhomogeneous. 

ACKNOWLEDGMENTS 

The author acknowledges helpful discussions with A. Hemon, S. Huberson, A. Lerat, and J. Ovadia. 
It is a pleasure to thank J. Virmont for his patient support and C. Chenais-Popovics for carefully reading 
the manuscript. 



440 N. GRANDJOUAN 

REFERENCES 

1. J. P. BORIS AND D. L. BOOK, J. Compur. Phys. 11, 38 (1973). 
2. D. L. BOOK, J. P. BORIS, AND K. HAIN, J. Comput. Phys. 18, 248 (1975). 
3. J. P. BORIS AND D. L. BOOK, J. Comput. Phys. 20, 397 (1976). 
4. S. T. ZALESAK, J. Comput. Phys. 40, 497 (1981). 
5. C. W. HIRT, J. Comput. Phys. 2, 339 (1968). 
6. R. F. WARMING AND B. J. HYEIT, J. Cornput. Phys. 14, 159 (1974). 
7. A. LERAT AND R. PEYRET, C. R. Acad. Sci. Paris Sbr. A 276, 759 (1973). 
8. R. PEYRET, Oflice National d’Etudes et de Recherche Atrospatiales, Publication No. 1977-5 

(unpublished). 
9. A. LERAT, Thesis, Universitt Pierre et Marie Curie, Paris VI, F&v. 1981 (unpublished). 

10. J. P. BORIS, Naval Research Laboratory, Memo. Report 3237 (March 1976) (unpublished). 
11. P. R. WINDWARD AND P. COLELLA, J. Comput. Phys. 54, 115 (1984). 
12. D. L. BOOK, J. P. BORIS, AND S. T. ZALESAK, “Flux-Corrected Transport,” in Finite Dtffeerence 

Techniques for Vectorized Fluid Dynamics Calculations, edited by D. L. Book (Springer-Verlag, New 
York, 1981). 

13. S. T. ZALESAK, Naval Research Laboratory, Memo. Report 3716 (May 1978) (unpublished). 
14. S. T. ZALESAK, Advances in Computer Methods for Partial Di&erential Equations, V, edited by 

R. Vichnevetsky and R. S. Stepleman (IMACS, Rutgers University, 1981). 
15. J. P. BORIS, private communication (1989). 


